Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Front Immunol ; 14: 1162211, 2023.
Article in English | MEDLINE | ID: covidwho-20231099

ABSTRACT

Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.


Subject(s)
Antiviral Agents , Cell Nucleus , Immunity
2.
Signal Transduct Target Ther ; 8(1): 170, 2023 04 26.
Article in English | MEDLINE | ID: covidwho-2292813

ABSTRACT

Currently, the incidence and fatality rate of SARS-CoV-2 remain continually high worldwide. COVID-19 patients infected with SARS-CoV-2 exhibited decreased type I interferon (IFN-I) signal, along with limited activation of antiviral immune responses as well as enhanced viral infectivity. Dramatic progresses have been made in revealing the multiple strategies employed by SARS-CoV-2 in impairing canonical RNA sensing pathways. However, it remains to be determined about the SARS-CoV-2 antagonism of cGAS-mediated activation of IFN responses during infection. In the current study, we figure out that SARS-CoV-2 infection leads to the accumulation of released mitochondria DNA (mtDNA), which in turn triggers cGAS to activate IFN-I signaling. As countermeasures, SARS-CoV-2 nucleocapsid (N) protein restricts the DNA recognition capacity of cGAS to impair cGAS-induced IFN-I signaling. Mechanically, N protein disrupts the assembly of cGAS with its co-factor G3BP1 by undergoing DNA-induced liquid-liquid phase separation (LLPS), subsequently impairs the double-strand DNA (dsDNA) detection ability of cGAS. Taken together, our findings unravel a novel antagonistic strategy by which SARS-CoV-2 reduces DNA-triggered IFN-I pathway through interfering with cGAS-DNA phase separation.


Subject(s)
COVID-19 , Interferon Type I , Humans , Nucleocapsid Proteins/genetics , SARS-CoV-2/genetics , DNA Helicases/genetics , COVID-19/genetics , RNA Helicases/genetics , Poly-ADP-Ribose Binding Proteins/genetics , RNA Recognition Motif Proteins/genetics , DNA , Interferon Type I/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
3.
Nat Commun ; 13(1): 5204, 2022 09 03.
Article in English | MEDLINE | ID: covidwho-2008282

ABSTRACT

In addition to investigating the virology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), discovering the host-virus dependencies are essential to identify and design effective antiviral therapy strategy. Here, we report that the SARS-CoV-2 entry receptor, ACE2, conjugates with small ubiquitin-like modifier 3 (SUMO3) and provide evidence indicating that prevention of ACE2 SUMOylation can block SARS-CoV-2 infection. E3 SUMO ligase PIAS4 prompts the SUMOylation and stabilization of ACE2, whereas deSUMOylation enzyme SENP3 reverses this process. Conjugation of SUMO3 with ACE2 at lysine (K) 187 hampers the K48-linked ubiquitination of ACE2, thus suppressing its subsequent cargo receptor TOLLIP-dependent autophagic degradation. TOLLIP deficiency results in the stabilization of ACE2 and elevated SARS-CoV-2 infection. In conclusion, our findings suggest selective autophagic degradation of ACE2 orchestrated by SUMOylation and ubiquitination as a potential way to combat SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Autophagy , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Sumoylation , Ubiquitin-Protein Ligases/metabolism
4.
Front Microbiol ; 13: 889835, 2022.
Article in English | MEDLINE | ID: covidwho-1969041

ABSTRACT

Autophagy is an evolutionarily conserved lysosomal degradation system which can recycle multiple cytoplasmic components under both physiological and stressful conditions. Autophagy could be highly selective to deliver different cargoes or substrates, including protein aggregates, pathogenic proteins or superfluous organelles to lysosome using a series of cargo receptor proteins. During viral invasion, cargo receptors selectively target pathogenic components to autolysosome to defense against infection. However, viruses not only evolve different strategies to counteract and escape selective autophagy, but also utilize selective autophagy to restrict antiviral responses to expedite viral replication. Furthermore, several viruses could activate certain forms of selective autophagy, including mitophagy, lipophagy, aggrephagy, and ferritinophagy, for more effective infection and replication. The complicated relationship between selective autophagy and viral infection indicates that selective autophagy may provide potential therapeutic targets for human infectious diseases. In this review, we will summarize the recent progress on the interplay between selective autophagy and host antiviral defense, aiming to arouse the importance of modulating selective autophagy as future therapies toward viral infectious diseases.

5.
RSC advances ; 12(10):6093-6098, 2022.
Article in English | EuropePMC | ID: covidwho-1787361

ABSTRACT

Copper alloys are known for their high antimicrobial efficacy. Retrofitting high-touch surfaces in public space with solid copper components is expensive and often impractical. Directly coating copper onto these high-touch surfaces can be achieved with hot or cold spray, but the procedure is complicated and requires special equipment. This article reports on the development of sprayable copper and copper–zinc nanowire inks for antiviral surface coating applications. Our results show that copper nanowires inactivate the SARS-CoV-2 virus faster than bulk copper. And a trace amount of zinc addition has a significant effect in enhancing the virucidal effect. More importantly, these nanowire inks are sprayable. They can be easily applied on high-touch surfaces with a spray can. When combined with common chemical disinfectants, the copper-based nanowire ink spray may prolong the disinfecting effect well after application. SEM and TEM images of copper and copper–zinc nanowires that are sprayable for antiviral surface coating.

6.
Nucleic Acids Res ; 50(5): 2509-2521, 2022 03 21.
Article in English | MEDLINE | ID: covidwho-1722548

ABSTRACT

Upon SARS-CoV-2 infection, viral intermediates specifically activate the IFN response through MDA5-mediated sensing and accordingly induce ADAR1 p150 expression, which might lead to viral A-to-I RNA editing. Here, we developed an RNA virus-specific editing identification pipeline, surveyed 7622 RNA-seq data from diverse types of samples infected with SARS-CoV-2, and constructed an atlas of A-to-I RNA editing sites in SARS-CoV-2. We found that A-to-I editing was dynamically regulated, varied between tissue and cell types, and was correlated with the intensity of innate immune response. On average, 91 editing events were deposited at viral dsRNA intermediates per sample. Moreover, editing hotspots were observed, including recoding sites in the spike gene that affect viral infectivity and antigenicity. Finally, we provided evidence that RNA editing accelerated SARS-CoV-2 evolution in humans during the epidemic. Our study highlights the ability of SARS-CoV-2 to hijack components of the host antiviral machinery to edit its genome and fuel its evolution, and also provides a framework and resource for studying viral RNA editing.


Subject(s)
COVID-19/immunology , Immunity, Innate/immunology , RNA Editing/immunology , SARS-CoV-2/immunology , Adenosine Deaminase/genetics , Adenosine Deaminase/immunology , Adenosine Deaminase/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Base Sequence , Binding Sites/genetics , COVID-19/genetics , COVID-19/virology , Evolution, Molecular , Gene Expression/immunology , Humans , Immunity, Innate/genetics , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferon-Induced Helicase, IFIH1/metabolism , Mutation , Protein Binding , RNA Editing/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Homology, Nucleic Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
7.
Signal Transduct Target Ther ; 6(1): 167, 2021 04 24.
Article in English | MEDLINE | ID: covidwho-1585891

ABSTRACT

The ongoing 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has posed a worldwide pandemic and a major global public health threat. The severity and mortality of COVID-19 are associated with virus-induced dysfunctional inflammatory responses and cytokine storms. However, the interplay between host inflammatory responses and SARS-CoV-2 infection remains largely unknown. Here, we demonstrate that SARS-CoV-2 nucleocapsid (N) protein, the major structural protein of the virion, promotes the virus-triggered activation of NF-κB signaling. After binding to viral RNA, N protein robustly undergoes liquid-liquid phase separation (LLPS), which recruits TAK1 and IKK complex, the key kinases of NF-κB signaling, to enhance NF-κB activation. Moreover, 1,6-hexanediol, the inhibitor of LLPS, can attenuate the phase separation of N protein and restrict its regulatory functions in NF-κB activation. These results suggest that LLPS of N protein provides a platform to induce NF-κB hyper-activation, which could be a potential therapeutic target against COVID-19 severe pneumonia.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , NF-kappa B/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Signal Transduction , A549 Cells , Acrylates/pharmacology , Animals , COVID-19/pathology , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Phosphoproteins/metabolism , Vero Cells , COVID-19 Drug Treatment
8.
Nature Astronomy ; 5(10):991-992, 2021.
Article in English | ProQuest Central | ID: covidwho-1500463

ABSTRACT

Held in Suzhou, Jiangsu province of China in June 2021, the conference served to unite a wide community of planetary science within China, and hopes to become one of the world’s premier planetary science conferences in the future.

9.
Signal Transduct Target Ther ; 5(1): 221, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-1387195
10.
Eur J Integr Med ; 44: 101323, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1126825

ABSTRACT

INTRODUCTION: Early in the epidemic of coronavirus disease 2019, the Chinese government recruited a proportion of healthcare workers to support the designated hospital (Huoshenshan Hospital) in Wuhan, China. The majority of front-line medical staff suffered from adverse effects, but their real health status during COVID-19 epidemic was still unknown. The aim of the study was to explore the latent relationship of the physical and mental health of front-line medical staff during this special period. METHODS: A total of 115 military medical staff were recruited between February 17th and February 29th, 2020 and asked to complete questionnaires assessing socio-demographic and clinical characteristics, self-reported sleep status, fatigue, resilience and anxiety. RESULTS: 55 medical staff worked within Intensive Care and 60 worked in Non-intensive Care, the two groups were significantly different in reported general fatigue, physical fatigue and tenacity (P<0.05). Gender, duration working in Wuhan, current perceived stress level and health status were associated with significant differences in fatigue scores (P<0.05), the current perceived health status (P<0.05) and impacted on the resilience and anxiety of participants. The structural equation modeling analysis revealed resilience was negatively associated with fatigue (ß=-0.52, P<0.01) and anxiety (ß=-0.24, P<0.01), and fatigue had a direct association with the physical burden (ß=0.65, P<0.01); Fatigue mediated the relationship between resilience and anxiety (ß=-0.305, P=0.039) as well as resilience and physical burden (ß=-0.276, P=0.02). CONCLUSION: During an explosive pandemic situation, motivating the effect of protective resilience and taking tailored interventions against fatigue are promising ways to protect the physical and mental health of the front-line medical staff.

11.
Proc Natl Acad Sci U S A ; 117(44): 27381-27387, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-867659

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global crisis. There is no therapeutic treatment specific for COVID-19. It is highly desirable to identify potential antiviral agents against SARS-CoV-2 from existing drugs available for other diseases and thus repurpose them for treatment of COVID-19. In general, a drug repurposing effort for treatment of a new disease, such as COVID-19, usually starts from a virtual screening of existing drugs, followed by experimental validation, but the actual hit rate is generally rather low with traditional computational methods. Here we report a virtual screening approach with accelerated free energy perturbation-based absolute binding free energy (FEP-ABFE) predictions and its use in identifying drugs targeting SARS-CoV-2 main protease (Mpro). The accurate FEP-ABFE predictions were based on the use of a restraint energy distribution (RED) function, making the practical FEP-ABFE-based virtual screening of the existing drug library possible. As a result, out of 25 drugs predicted, 15 were confirmed as potent inhibitors of SARS-CoV-2 Mpro The most potent one is dipyridamole (inhibitory constant Ki = 0.04 µM) which has shown promising therapeutic effects in subsequently conducted clinical studies for treatment of patients with COVID-19. Additionally, hydroxychloroquine (Ki = 0.36 µM) and chloroquine (Ki = 0.56 µM) were also found to potently inhibit SARS-CoV-2 Mpro We anticipate that the FEP-ABFE prediction-based virtual screening approach will be useful in many other drug repurposing or discovery efforts.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Drug Repositioning , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , COVID-19 , Chloroquine/pharmacology , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Cysteine Endopeptidases , Dipyridamole/pharmacology , Humans , Hydroxychloroquine/pharmacology , Molecular Docking Simulation , Molecular Structure , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2
12.
Acta Pharm Sin B ; 10(7): 1205-1215, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-88716

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause acute respiratory distress syndrome, hypercoagulability, hypertension, and multiorgan dysfunction. Effective antivirals with safe clinical profile are urgently needed to improve the overall prognosis. In an analysis of a randomly collected cohort of 124 patients with COVID-19, we found that hypercoagulability as indicated by elevated concentrations of D-dimers was associated with disease severity. By virtual screening of a U.S. FDA approved drug library, we identified an anticoagulation agent dipyridamole (DIP) in silico, which suppressed SARS-CoV-2 replication in vitro. In a proof-of-concept trial involving 31 patients with COVID-19, DIP supplementation was associated with significantly decreased concentrations of D-dimers (P < 0.05), increased lymphocyte and platelet recovery in the circulation, and markedly improved clinical outcomes in comparison to the control patients. In particular, all 8 of the DIP-treated severely ill patients showed remarkable improvement: 7 patients (87.5%) achieved clinical cure and were discharged from the hospitals while the remaining 1 patient (12.5%) was in clinical remission.

SELECTION OF CITATIONS
SEARCH DETAIL